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C
oherent quantum dynamics of exci-
tons in semiconductor quantum dots
(QDs) are of key interest, besides

fundamental physics, for many applications
ranging from quantum computing1 to ad-
vanced photonics devices including single-
photon switches2 and thresholdless nano-
lasers.3 Extensive work has been reported
on this topic, investigating almost exclu-
sively epitaxially grown QDs which are em-
bedded in a matched defect-free crystalline
environment. With the recent advances in
colloidal synthesis, high-quality semicon-
ductor nanocrystals have become more
and more available,4 with the advantage
of being much less expensive to fabricate
and easier to engineerwith a large variety of
sizes, shapes, and composition.
After the first pioneering works5,6 in the

early 2000s, it is now well understood that
the exciton decoherence in semiconductor
quantum dots is non-exponential even at
low temperatures, corresponding to a non-
Lorentzian homogeneous line shape with a
sharp zero-phonon line (ZPL) superimposed
onto a broad acoustic phonon band. Impor-
tantly, it was shown that in epitaxially grown
InAs/GaAs QDs the ZPL dephasing is limited
at 5 K by the ∼1 ns radiative lifetime.7,8 The
picture is much less clear for colloidal QDs
which have smaller sizes and stronger di-
electric confinement and, in turn, longer
radiative lifetimes. While a ZPL ∼ 10 μeV
was reported in large core wurtzite CdSe/
ZnS colloidal QDs at low temperature via

spectral hole burning9 and single-dot spec-
troscopy experiments10 (corresponding to
∼100 ps exciton dephasing time much
shorter than the ∼10 ns radiative lifetime),
its physical origin remained an open ques-
tion, also because these experiments were
limited by spectral diffusion (a variation of

the QD transition frequency over time from
slow fluctuations of the QD environment).
We recently measured the temperature-

dependent ZPL dephasing of the lowest
bright exciton in large core (∼8 nm) CdSe/
ZnS wurtzite QDs using a sensitive three-
beam four-wave mixing (FWM) photon
echo technique unaffected by spectral dif-
fusion.11 We compared the dephasing time
with the exciton density dynamics within
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ABSTRACT

We have measured the intrinsic exciton dephasing in high-quality zinc blende CdSe/CdS

colloidal quantum dots in the temperature range from 5 to 170 K using a sensitive three-beam

photon echo technique in heterodyne detection, which is not affected by spectral diffusion.

Pure dephasing via acoustic phonons dominates the initial dynamics, followed by an

exponential zero-phonon line dephasing. From the temperature dependence of the zero-

phonon line dephasing, the exciton lifetime, and the exciton thermalization within its fine

structure, we show that the zero-phonon line dephasing of the lowest bright state originates

from the phonon-assisted spin�flip to dark exciton states. Importantly, we can control the

dephasing by tailoring the exciton fine structure through its dependence on the dot core size

and shell thickness, as expected from the spin�flip mechanism. By reducing the electron�
hole exchange interaction with increasing core size and delocalization of the electron wave

function in the quasi-type-II core/shell band alignment, we find the longest zero-phonon line

dephasing time of ∼110 ps at 5 K in dots with the largest core diameter (5.7 nm) and the

thickest CdSe shell (9 monolayers) in the series studied.

KEYWORDS: exciton dephasing . transient four-wave mixing .
colloidal nanocystals
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the exciton fine structure measured in the same ex-
periment. Our results showed unambiguously that the
physical origin of the zero-phonon line dephasing at
5 K is the rapid (∼100 ps) phonon-assisted spin�flip
from the lowest bright state to the dark exciton state.
This finding is different from InGaAs/GaAs epitaxially
grown QDs, where the bright�dark exciton relaxation
is in the 10�100 ns range, longer than the ∼1 ns
radiative lifetime.7 Besides differences in the bulk
material parameters, one can argue that the reason
for the longer spin�flip time in epitaxially grown InAs/
GaAs QDs is the smaller fine structure splitting energy
ΔBD between the lowest bright and dark exciton states,
which is only12 100�250 μeV compared to the several
meV energy separation in CdSe nanocrystals.13 A
smaller ΔBD corresponds to a reduced phonon density
of states for the phonon-assisted relaxation hence a
longer spin�flip time. Such a behavior was clearly
observed in the magnetic field dependence of the
electron spin coherence in InGaAs QDs.14 ΔBD is tun-
able inQDs by controlling the electron�hole exchange
interaction.13 In practice, this is controlled by changing
the size of the QD core (ΔBD � 1/R3 in spherical dots of
radius R) but also the extension of the wave function
into the barrier since the electron�hole exchange
depends on the extent of the electron�hole wave
function overlap.15 It was recently reported that, in
CdSe/CdS colloidal QDs, which have a quasi-type-II
band alignment corresponding to a delocalization of
the electron wave function in the barrier material,
a ΔBD as low as 250 μeV is achieved on thick-shell
samples.16

After understanding the physical origin of the ZPL
exciton dephasing in CdSe QDs, we can expect to be
able to control its time scale by engineering QDs with
variable fine structure splitting ΔBD. To verify this
hypothesis, we havemeasured in this work the exciton
dephasing in a series of quasi-type-II CdSe/CdS QDs
with three different core diameters of 3.3, 4.6, and
5.7 nm and a CdS shell of 0, 2, or 9 monolayer (ML)
thickness. We indeed find that the ZPL dephasing time
at 5 K increases with increasing core size and shell
thickness. Moreover, from the temperature depen-
dence, we deduce ΔBD, which correlates well with
themeasured dephasing, as expected from its physical
origin.

RESULTS AND DISCUSSION

Transmission electron microscopy images showing
CdSe/CdS QDs of the investigated sample series are
given in Figure 1. X-ray diffraction patterns confirm
that the crystal structure is zinc blende. Hence, the
∼20 meV crystal-field splitting at the valence band
maximum of the wurtzite crystal structure is not pre-
sent in these QDs, an important point for their exci-
tonic energy level structure, as will be discussed later

(see also Supporting Information). The QDs are not
perfectly spherical neither identical; that is, the ensem-
ble is inhomogeneously broadened. Absorption
spectra at room temperature (see Figure 1) of all
investigated samples show the expected red shift of
the ground-state excitonic absorption peak with in-
creasing core size and shell thickness as a consequence
of the reduced exciton localization. Measurements of
the red shift by increasing the shell thickness layer-by-
layer (see Supporting Information) indicate a satura-
tion of the shift above 9 ML.
Similar to our previous work on CdSe/ZnS wurtzite

QDs,11 we have measured the dephasing time of the
lowest bright exciton using transient three-beam FWM
(see sketch in Figure 2) in resonance with the excitonic
ground-state absorption. Each beam is a train of 150 fs
pulses with 76 MHz repetition rate. The first pulse (P1)
induces a coherent polarization in the sample, which
after a delay τ12 is converted into a density grating by
the second pulse (P2). The third pulse (P3), delayed by
τ23 from P2, is diffracted by this density grating, yielding
the FWM signal. In the heterodyne technique used,17

the pulse trains are frequency shifted, resulting in a
moving density grating and a frequency-shifted FWM
field which is detected by its interference with an
unshifted reference pulse of adjustable delay. In an
inhomogeneously broadened ensemble, the FWM sig-
nal is a photon echo emitted at τ12 after P3 and the
microscopic dephasing is inferred from the decay of
the photon echo amplitude versus τ12. Conversely, the
decay of the photon echo amplitude versus τ23 probes
the exciton density dynamics.18 The time-integrated
FWM (TI-FWM) field amplitude versus τ12 given in
Figure 2 is therefore a direct measure of the intrinsic
exciton dephasing and shows systematic variations in

Figure 1. Left: Absorption spectra at room temperature of
the synthesized CdSe/CdS QDs of different core diameters
as indicated, having a 0, 2, or 9 ML shell thickness. Right:
Transmission electron microscopy images of the corre-
sponding samples with 4.6 nm core. Scale bar: 10 nm.
Sketches of the core (red) and shell (green) structure are
given for illustration.
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the investigated sample series. Generally, the dephas-
ing has an initial subpicosecond component even at
5 K followed by a long exponential dephasing time (T2)
resolved at larger τ12. This behavior reflects in time
domain the composite homogeneous line shape con-
sisting of a sharp Lorentzian ZPL (corresponding to the
long exponential dephasing) superimposed onto a
broad acoustic phonon band (the initial fast dephas-
ing). It is due to the excitation of localized carriers,
which distort the lattice equilibrium and couples the
optical transition with phonon absorption/emission
processes similar to roto-vibrational bands in molec-
ules. We observe that with increasing dot diameter
and shell thickness (i.e., with decreasing localization)
the initial component becomes slower and decreases
its amplitude, which corresponds to a reduction of the
acoustic phonon bandwidth and weight, respectively.
Importantly, with decreasing localization, T2 also in-
creases, and we measure values at 5 K ranging from T2
= 12 ps for the 3.3 nm core 2 ML shell sample to 41 ps
for the 5.7 nm core 2ML shell dots to even 107 ps as the
longest decay for the 5.7 nm core 9 ML thick shell
sample. With increasing temperature, the initial de-
phasing becomes faster and more dominant for all
samples, as expected from the increased phonon
occupation, while T2 decreases (shown in Figure 2 for
the 5.7 nm core 2 ML shell sample).
From the dynamics in Figure 2, we have quantified in

Figure 3 the temperature dependence of the acoustic
phonon band Γph full width at half-maximum (fwhm)
of the ZPL fwhm, γZPL = 2p/T2, and of the ZPLweight, Z,
using the method discussed in ref 8. Above 100 K, the
initial dephasing becomes faster than the pulse dura-
tion in the experiment, hence the reported Γph

represents a lower bound. The dephasing at long
delays is dominated by a monoexponential decay,
hence a well-defined T2 can be extracted. Only in the
sample with 5.7 nm core and 9 ML shell is a significant
biexponential decay observed, in which case the γZPL
values from both components are shown in Figure 3.
We speculate that the biexponential decay is due to a
larger (possibly bimodal) dot size distribution in this
sample.
With decreasing exciton localization in the sample

series, we observe that the ZPL weight increases and
Γph decreases, similar to what was shown in our
previous work on InGaAs/GaAs QDs and as expected
from theory within the so-called independent Boson
model.8 It is interesting to observe that, for the same
core size, dots with thicker shell exhibit a larger ZPL
weight and a smaller Γph, indicating that the electron
wave function localization plays an important role in
the coupling with acoustic phonons. With increasing
temperature, it is also expected that the weight of the
ZPL decreases and the width of the phonon band
increases,8 which is indeed what we observe in all of
our samples. With decreasing exciton localization, we
also observe that γZPL at 5 K decreases while showing a
more rapid increase with temperature. To understand
the temperature dependence of γZPL, we have fitted
the data following the same approach as in our
previous work on CdSe/ZnS QDs11 based on the

Figure 3. ZPL weight Z and homogeneous line width fwhm
of the ZPL (γZPL) and of the acoustic phonon band (Γph)
versus temperature in all investigated samples. The inset is a
sketch of the lower bright�dark exciton relaxation model.
The lines onto γZPL are fits to the data (see text).

Figure 2. Measured time-integrated FWM field amplitude
versus delay between the first two pulses for different
temperatures for the 5.7 nm core 2 ML shell CdSe/CdS
QDs (top left) and at 5 K for different samples (bottom), as
indicated. The dashed lines are exponential fits to the data.
The dephasing time inferred from the longest decay com-
ponent in the 5.7 nm core 9 ML shell sample is also
indicated. Top right is a sketch of the three-beam FWM
directional geometry.
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three-level model sketched in the inset of Figure 3. In
this model, the dephasing rate is given by γZPL = γB þ
γ0 þ γth þ γU, where γB is the radiatively limited
dephasing of the lowest bright state, γ0 and γth are
the spin�flip relaxation into the lowest dark state via

spontaneous and stimulated phonon emission, respec-
tively, and γU accounts for excitation into a higher state
by phonon absorption. Hence γth = γ0NB, where NB =
1/[exp(ΔBD/kBT) � 1] is the phonon occupation num-
ber, and similarly, γU = γ0U/[exp(ΔU/kBT)� 1]. As will be
shown later, the exciton density dynamics allows us to
deduce γB, which is found to be negligible compared
to γ0 for all samples. Thus, the zero temperature
extrapolated ZPL dephasing, γ0 þ γB, is dominated
by the spin�flip rate, γ0 . γB. Moreover, the increase
of γZPL with temperature up to about 20 K reflects the
magnitude of ΔBD. A summary of the parameters
deduced from the fits of γZPL versus temperature is
shown in Table 1 (in some cases, to achieve conver-
gence in the fit, not all parameters could vary freely,
and those kept fixed are shown without errors).
Remarkably, there is a good correlation between γ0

and ΔBD, with the smallest γ0 in the few μeV range for
the smallest ΔBD ∼ 100 μeV which, as expected, is
found in dots with the largest core and thick shell. This
correlation is consistent with our initial hypothesis that
reducing ΔBD reduces the spin�flip rate due to the
reduced phonon density of states in the phonon-
assisted relaxation.
To separately determine γB and gain more insight

into the excitonic fine structure energy level scheme,
we have investigated the temperature dependence of
the exciton decay rate by measuring the TI-FWM
versus τ23 and by time-resolved photoluminescence
(PL) using time-correlated single-photon counting. TI-
FWM versus τ23 is shown in Figure 4 on the 5.7 nm core
2 ML shell sample as an example. It exhibits a multi-
exponential decay which we fit with four time con-
stants in the subpicosecond (τ1), tens of picoseconds
(τ2), hundreds of picoseconds (τ3), and few nanose-
cond (τ4) range (data shown in Figure 4 are a zoomover
the first 100 ps, butmeasurements were taken up to τ23
= 1.6 ns). The τ1 and τ2 are attributed to a subensemble
of QDs resonantly excited in the upper bright states,
showing a rapid relaxation toward the lower states,

which is expected considering the spectral width of the
exciting pulses in the FWM experiment (∼20 meV) and
the inhomogeneous broadening in the sample (∼70
meV). For a two-level system with a density dynamics
determined by absorption and emission of phonons,
the decay rate follows a thermally activated behavior
given by G[1 þ 2/(exp(Δ/kBT) � 1)], where Δ is the
energy splitting between the two levels. Using this
expression, we have fitted the temperature depen-
dence of τ1 and τ2, as shown in the inset of Figure 4.
An overview of the parameters obtained from these fits
in the QDswith 5.7 and 4.6 nm core is shown in Table 2.
For the 3.3 nm core samples, the first subpicosecond
time constant is below the temporal resolution in the
experiment, while the second time constant is found to
be temperature-independent, indicating a large en-
ergy splitting (Δ > 10 meV). We note that τ1 is in the
same time scale as the initial subpicosecond dephas-
ing shown in Figure 2, hence it might contribute to it.
This implies that the ZPLweight shown in Figure 3 is an
underestimate. We find that the amplitude of the
subpicosecond density decay is in the 30�50% range,
nearly temperature-independent (see Figure 4), which
corresponds to an underestimate of the ZPL weight of

TABLE 1. Parameters Obtained from Fitting γZPL versus

Temperature: 5.7 nm/9 ML Lower and Upper Refer,

Respectively, to Solid and Dashed Curves in Figure 3

γ0 (μeV) ΔBD (μeV) γ0U (meV) ΔU (meV)

3.3 nm/2 ML 100 ( 7 1200 ( 3000 3 7 ( 3
4.6 nm/2 ML 44 ( 2 820 ( 90 1.9 ( 0.8 6.3 ( 0.8
5.7 nm/2 ML 25 ( 1 680 ( 70 1.0 ( 0.2 5.2 ( 0.4
3.3 nm/9 ML 31 ( 4 680 ( 140 2.6 7.6 ( 0.8
4.6 nm/9 ML 9 ( 4 310 ( 190 2.2 ( 2.1 6 ( 1.6
5.7 nm/9 ML lower 2.9 ( 0.2 100 1.0 ( 0.4 5.7 ( 0.8
5.7 nm/9 ML upper 20 ( 2 750 ( 120 2.3 ( 0.6 7.6 ( 0.7

Figure 4. Top: Exciton density dynamics measured by TI-
FWM versus τ23 at τ12 = 0 on the 5.7 nm core 2 ML shell
sample. Dashed lines are fits to the data (see text). The inset
shows the decay rates inferred from the first two time
constants in the multiexponential dynamics and the corre-
sponding temperature activated fits. Bottom: Time-
resolved PL dynamics versus temperature on the same
sample. The inset shows the exciton recombination rate
deduced from the long exponential PL decay, together with
the calculated thermal average of the radiative recombina-
tion within the excitonic fine structure. Filled symbols show
the recombination rate for the 5.7 nm core 9 ML thick shell
QDs.
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10�15% from the cubic relationship8 between the
FWM field and Z.
Concerning the exciton dynamics at long delays, we

found τ3 ∼ 400 ps, which we attribute to Auger
recombination of charged excitons,19 and a τ4 of
several nanoseconds due to radiative recombination.
Given the limited range of available delays in the FWM
experiment, we have investigated the temperature-
dependent radiative recombination rate using time-
resolved PL, similar to what was shown in ref 20. PL
measurements are shown in the bottom panel of
Figure.4 for the 5.7 nm core 2 ML shell sample. At
5 K, the decay is biexponential (with a short, response-
time-limited lifetime and a long lifetime20), which is a
characteristic signature of the spin�flip relaxation of
the bright exciton into the lowest dark level.21 With
increasing temperature, the decay becomes more
monoexponential and represents the thermal average
of the exciton radiative decay within the fine structure.
The observation of a monoexponential decay already
at 20 K suggests a dark�bright splitting of less than
2 meV, consistent with the FWM measurements (see
Table 1). The temperature dependence of the rate γrad
corresponding to the long decay component in the
time-resolved PL is plotted in the bottom inset of
Figure 4.
At this stage, let us discuss the excitonic energy fine

structure in light of the results in Table 1 and Table 2
and of the temperature dependence of γrad. First we
have calculated, following ref 13 (see also ref 20 and
Supporting Information), the energy fine structure of
nonperfectly spherical zinc blende core-only CdSe QDs
to estimate the energy levels of the thin shell samples.
Assuming a shape which retains cylindrical symmetry
around an axis (i.e., oblate or prolate), exciton levels are
classified by the absolute value of the total angular
momentumprojection |F| along this axis. It is this shape
anisotropy that splits the lowest levels into an optically
forbidden “dark” level (|F| = 2 two-fold degenerate in
the oblate case, F = 0 called 0L in the prolate case)
energetically lying below a two-fold degenerate |F| = 1
bright level called (1L, with an energy separation
decreasing with increasing dot diameter and in the
range of ∼1 meV for 5 nm core diameter, consistent
with our observations. Moreover, for slightly oblate
QDs, three levels fairly close in energy to each other lie

several meV above the (1L, which are, in order of
ascending separation from(1L, the F = 0 called 0L dark
level, the |F| = 1 called (1U upper bright level, and the
F = 0 called 0U upper bright level. This ordering is
consistentwith the energy separations found in Table 1
and Table 2, with ΔBD being the splitting between (2
and (1L, ΔU being the average distance of (1L to the
upper levels and Δ1,2 being the separations of (1L to
the two upper bright levels. Within this picture, we
have calculated γrad as the thermal average between
these 5 sublevels, which is shown in Figure 4 for the
5.7 nm core 2 ML shell sample. We can well reproduce
the measured temperature dependence using the
energy separations from Table 1 and Table 2 and a
radiative rate of the lowest bright state of 0.14( 0.02/ns,
which corresponds to a radiatively limited dephas-
ing of only γB = 0.09 ( 0.01 μeV, much smaller than
the spin�flip limited dephasing γ0 = 25 μeV in this
sample. The radiative rates of the upper bright states
used to reproduce the experimental γrad are 0.32/ns for
the 0U level and 0.18/ns for the (1U level, scaling as
expected from calculations of the oscillator strength for
slightly oblate QDs (see Supporting Information). Similar
results were found for the other thin shell samples.
Moreover, with increasing shell thickness, we found a
much reduced temperature dependence of γrad (see
bottom inset Figure 4 for the 5.7 nm core 9 ML shell
sample) which is consistent with the reduced fine
structure splitting in these dots.
A final confirmation that the ZPL dephasing of the

lowest bright exciton at low temperature originates
from spin�flip relaxation is obtained from a direct
measurement of the bright�dark relaxation in our
samples via the FWM amplitude versus τ23 for τ12 > 0.
As shown in our previouswork on CdSe/ZnSQDs,11 this
measurement is sensitive to the density dynamics
within the fine structure since a spectrally modulated
density grating is created. In Figure 5 (left), the mea-
sured FWM amplitude versus τ23 at 10 K is shown for
three different values of τ12 for the 5.7 nm core 2 ML
shell sample. We clearly observe that for τ12 > 0 a new
initial dynamics appears, the effect being most pro-
nounced for τ12 = 1 ps. As explained in our previous
work,11 we expect the bright�dark relaxation to man-
ifest as an additional decrease in the FWM signal versus
τ23. Moreover, due to the phase difference between
the fields from the crystal ground state to exciton
transition and exciton�biexiton transition at the
photon echo time, this decrease is most pronounced
for τ12 equal to half the exciton�biexciton beat
period.11 In Figure 5 (left), we show also the ratio
between the FWM dynamics at τ12 = 1 ps and τ12 = 0
to highlight the presence of the new time constant (τs)
which we infer with an exponential decay fit. This time
constant is in good agreement with the measured ZPL
dephasing time taken as a density lifetime T2/2, as
shown in Figure 5 (right). One should also note that τs is

TABLE 2. Parameters G1,2 and Δ1,2 Obtained from the Fit

of p/τ1,2 with τ1,2 First Two Time Constants of the Exciton

Density Decay Measured with FWM versus τ23
a

G1 (meV) Δ1 (meV) G2 (μeV) Δ2 (meV)

4.6 nm/2 ML 2.60 ( 0.04 9.4 ( 0.3 50 ( 5 7.1 ( 0.6
5.7 nm/2 ML 1.9 ( 0.1 6.5 ( 0.8 36 ( 8 4.5 ( 1.3
4.6 nm/9 ML 2.10 ( 0.05 4.8 ( 0.3
5.7 nm/9 ML 1.67 ( 0.04 2.8 ( 0.1 30 ( 3 2.4 ( 0.4

a On the the 4.6 nm/9 ML sample, a good fit to the data was found using only τ1.
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the thermalization time between the bright and dark
states. In the low-temperature limit, where the spin�
flip relaxation time into the lowest dark state is the
dominant dephasing mechanism (i.e., higher dark
states can be neglected), one can relate τs to the
dephasing using a simple two-level system descrip-
tion. In this case, the rate 1/τs is the sum of phonon-
assisted absorption and emission (spontaneous plus
stimulated) rates between the lowest bright and dark
states, while the dephasing is given only by the relaxa-
tion (hence emission) rate. Thus the time constant to

be compared with T2/2 is not exactly τs but the
relaxation time τrel = τs[1þ exp(�ΔBD/kBT)]. In Figure 5
(right), both τrel and τs are shown for the 5.7 nm core
and 4.6 nm core samples (where the signal-to-noise
ratio in the measurements was sufficient to per-
form this analysis), and we see that τrel is indeed in very
good agreement with the dephasing time at low
temperature.

CONCLUSION

In conclusion, we have shown that the intrinsic zero-
phonon line dephasing of the ground-state exciton in
quasi-type-II CdSe/CdS zinc blende colloidal quantum
dots at low temperatures is due to the spin�flip from
the lowest bright to the dark exciton state. Importantly,
this dephasing is tuned by engineering the excitonic
fine structure, which is achieved in our sample series by
varying the core size and shell thickness and in turn the
electron�hole exchange interaction. We find that by
decreasing the bright-dark energy splitting ΔBD the
zero-temperature extrapolated dephasing rate, and in
turn the homogeneous line width, decreases to values
as low as ∼3 μeV for ΔBD ∼ 100 μeV. It should be
emphasized that the use of quasi-type-II dots enables
wave function engineering beyond mere size tuning,
with the potential to extend the dephasing time
at any predefined wavelength. The ability to tailor
the exciton dephasing time demonstrated in this work
is a key step toward the exploitation of colloidal quantum
dots for coherent quantum dynamics applications.

METHODS

Synthesis and Structural Characterization. Colloidal CdSe core
QDs were synthesized according to an established procedure.22

The CdS shell was grown by succesive ion layer addition and
reaction (SILAR).23 With the QD diameter and concentration, we
calculated the amount of Cd and S to be added to form a shell of
2 and 9 monolayers, respectively. For all samples, the average
core diameter and shell thickness were determined using
transmission electron microscopy by measuring the average
diameter of the CdSe core-only QDs and the corresponding
CdSe/CdS core�shell QDs. The resulting shell thickness agrees
with the predetermined number of layers using a thickness of
0.34 nm per CdS monolayer.

Transient FWM Measurements. Colloidal QDs were dispersed in
a polystyrene film and sandwiched between two quartz win-
dows mounted onto a coldfinger cryostat for temperature-
dependent measurements. To preferentially excite the lowest
bright ground-state excitonic absorption, the center wave-
length of the exciting pulses was tuned below the PL emission
at low temperature by an amount on the order of the Stokes
shift in these QDs. To minimize selective excitation of linearly
polarized transitions in the ensemble of randomly oriented
colloidal QDs, all pulses were co-circularly polarized. Transient
FWMmeasurements versus τ12 were taken for nonzero τ23 = 1 ps
to exclude nonresonant nonlinearities. The time-averaged ex-
citation intensity was well within the third-order nonlinear
regime and also resulted in negligible local heating as we
affirmed by power-dependent measurements.

Time-Resolved PL Measurements. QDs were drop-cast on a quartz
glass plate, forming a close-packed thin film. Samples were

mounted in a helium cryostat for time-resolved PL measurements
in a temperature range of 5�300 K. QDs were excited at 400 nm
(i.e., far above the band gap) by a frequency-doubled 80 MHz
Ti:Sa femtosecond pulsed laser. PL traces were collected by time-
correlated single-photon counting using an avalanche photodiode.
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